Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Inequality Constrained Trajectory Optimization with A Hybrid Multiple-shooting iLQR (2109.07131v2)

Published 15 Sep 2021 in cs.RO

Abstract: Trajectory optimization has been used extensively in robotic systems. In particular, iterative Linear Quadratic Regulator (iLQR) has performed well as an off-line planner and online nonlinear model predictive control solver, with a lower computational cost. However, standard iLQR cannot handle any constraints or perform reasonable initialization of a state trajectory. In this paper, we propose a hybrid constrained iLQR variant with a multiple-shooting framework to incorporate general inequality constraints and infeasible states initialization. The main technical contributions are twofold: 1) In addition to inheriting the simplicity of the initialization in multiple-shooting settings, a two-stage framework is developed to deal with state and/or control constraints robustly without loss of the linear feedback term of iLQR. Such a hybrid strategy offers fast convergence of constraint satisfaction. 2) An improved globalization strategy is proposed to exploit the coupled effects between line-searching and regularization, which is able to enhance the numerical robustness of the constrained iLQR approaches. Our approach is tested on various constrained trajectory optimization problems and outperforms the commonly-used collocation and shooting methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube