Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Legal Transformer Models May Not Always Help (2109.06862v2)

Published 14 Sep 2021 in cs.CL

Abstract: Deep learning-based Natural Language Processing methods, especially transformers, have achieved impressive performance in the last few years. Applying those state-of-the-art NLP methods to legal activities to automate or simplify some simple work is of great value. This work investigates the value of domain adaptive pre-training and language adapters in legal NLP tasks. By comparing the performance of LLMs with domain adaptive pre-training on different tasks and different dataset splits, we show that domain adaptive pre-training is only helpful with low-resource downstream tasks, thus far from being a panacea. We also benchmark the performance of adapters in a typical legal NLP task and show that they can yield similar performance to full model tuning with much smaller training costs. As an additional result, we release LegalRoBERTa, a RoBERTa model further pre-trained on legal corpora.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.