Papers
Topics
Authors
Recent
2000 character limit reached

AligNART: Non-autoregressive Neural Machine Translation by Jointly Learning to Estimate Alignment and Translate

Published 14 Sep 2021 in cs.CL and cs.AI | (2109.06481v1)

Abstract: Non-autoregressive neural machine translation (NART) models suffer from the multi-modality problem which causes translation inconsistency such as token repetition. Most recent approaches have attempted to solve this problem by implicitly modeling dependencies between outputs. In this paper, we introduce AligNART, which leverages full alignment information to explicitly reduce the modality of the target distribution. AligNART divides the machine translation task into $(i)$ alignment estimation and $(ii)$ translation with aligned decoder inputs, guiding the decoder to focus on simplified one-to-one translation. To alleviate the alignment estimation problem, we further propose a novel alignment decomposition method. Our experiments show that AligNART outperforms previous non-iterative NART models that focus on explicit modality reduction on WMT14 En$\leftrightarrow$De and WMT16 Ro$\rightarrow$En. Furthermore, AligNART achieves BLEU scores comparable to those of the state-of-the-art connectionist temporal classification based models on WMT14 En$\leftrightarrow$De. We also observe that AligNART effectively addresses the token repetition problem even without sequence-level knowledge distillation.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.