Papers
Topics
Authors
Recent
2000 character limit reached

Blood vessel segmentation in en-face OCTA images: a frequency based method (2109.06116v2)

Published 13 Sep 2021 in eess.IV and cs.CV

Abstract: Optical coherence tomography angiography (OCTA) is a novel noninvasive imaging modality for visualization of retinal blood flow in the human retina. Using specific OCTA imaging biomarkers for the identification of pathologies, automated image segmentations of the blood vessels can improve subsequent analysis and diagnosis. We present a novel segmentation method for vessel density identification based on frequency representations of the image, in particular, using so-called Gabor filter banks. The algorithm is evaluated qualitatively and quantitatively on an OCTA image in-house data set from $10$ eyes acquired by a Cirrus HD-OCT device. Qualitatively, the segmentation outcomes received very good visual evaluation feedback by experts. Quantitatively, we compared the resulting vessel density values with automated in-built values provided by the device. The results underline the visual evaluation. For the evaluation of the FAZ identification substep, manual annotations of $2$ expert graders were used, showing that our results coincide well in visual and quantitative manners. Lastly, we suggest the computation of adaptive local vessel density maps that allow straightforward analysis of retinal blood flow in a local manner.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.