Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Influence Maximization under the Independent Cascade Model with Node-Level Feedback (2109.06077v3)

Published 13 Sep 2021 in cs.SI, cs.DS, and cs.LG

Abstract: We study the online influence maximization (OIM) problem in social networks, where the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade in multiple rounds. In the demand of the real world, we work with node-level feedback instead of the common edge-level feedback in the literature. The edge-level feedback reveals all edges that pass through information in a cascade, whereas the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes. Previously, there is a nearly optimal $\tilde{O}(\sqrt{T})$-regret algorithm for OIM problem under the linear threshold (LT) diffusion model with node-level feedback. It remains unknown whether the same algorithm exists for the independent cascade (IC) diffusion model. In this paper, we resolve this open problem by presenting an $\tilde{O}(\sqrt{T})$-regret algorithm for OIM problem under the IC model with node-level feedback.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube