Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Robust Algebraic Multilevel Domain Decomposition Preconditioner For Sparse Symmetric Positive Definite Matrices (2109.05908v1)

Published 13 Sep 2021 in math.NA and cs.NA

Abstract: Domain decomposition (DD) methods are widely used as preconditioner techniques. Their effectiveness relies on the choice of a locally constructed coarse space. Thus far, this construction was mostly achieved using non-assembled matrices from discretized partial differential equations (PDEs). Therefore, DD methods were mainly successful when solving systems stemming from PDEs. In this paper, we present a fully algebraic multilevel DD method where the coarse space can be constructed locally and efficiently without any information besides the coefficient matrix. The condition number of the preconditioned matrix can be bounded by a user-prescribed number. Numerical experiments illustrate the effectiveness of the preconditioner on a range of problems arising from different applications.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.