Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Robust Algebraic Multilevel Domain Decomposition Preconditioner For Sparse Symmetric Positive Definite Matrices (2109.05908v1)

Published 13 Sep 2021 in math.NA and cs.NA

Abstract: Domain decomposition (DD) methods are widely used as preconditioner techniques. Their effectiveness relies on the choice of a locally constructed coarse space. Thus far, this construction was mostly achieved using non-assembled matrices from discretized partial differential equations (PDEs). Therefore, DD methods were mainly successful when solving systems stemming from PDEs. In this paper, we present a fully algebraic multilevel DD method where the coarse space can be constructed locally and efficiently without any information besides the coefficient matrix. The condition number of the preconditioned matrix can be bounded by a user-prescribed number. Numerical experiments illustrate the effectiveness of the preconditioner on a range of problems arising from different applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.