Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Solving a Stochastic Shortest-Path Markov Decision Process as Probabilistic Inference (2109.05866v1)

Published 13 Sep 2021 in cs.LG and cs.AI

Abstract: Previous work on planning as active inference addresses finite horizon problems and solutions valid for online planning. We propose solving the general Stochastic Shortest-Path Markov Decision Process (SSP MDP) as probabilistic inference. Furthermore, we discuss online and offline methods for planning under uncertainty. In an SSP MDP, the horizon is indefinite and unknown a priori. SSP MDPs generalize finite and infinite horizon MDPs and are widely used in the artificial intelligence community. Additionally, we highlight some of the differences between solving an MDP using dynamic programming approaches widely used in the artificial intelligence community and approaches used in the active inference community.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.