Mitigating Language-Dependent Ethnic Bias in BERT (2109.05704v2)
Abstract: BERT and other large-scale LMs contain gender and racial bias. They also exhibit other dimensions of social bias, most of which have not been studied in depth, and some of which vary depending on the language. In this paper, we study ethnic bias and how it varies across languages by analyzing and mitigating ethnic bias in monolingual BERT for English, German, Spanish, Korean, Turkish, and Chinese. To observe and quantify ethnic bias, we develop a novel metric called Categorical Bias score. Then we propose two methods for mitigation; first using a multilingual model, and second using contextual word alignment of two monolingual models. We compare our proposed methods with monolingual BERT and show that these methods effectively alleviate the ethnic bias. Which of the two methods works better depends on the amount of NLP resources available for that language. We additionally experiment with Arabic and Greek to verify that our proposed methods work for a wider variety of languages.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.