Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nimber-Preserving Reductions and Homomorphic Sprague-Grundy Game Encodings (2109.05622v2)

Published 12 Sep 2021 in cs.CC, cs.AI, cs.DM, cs.DS, and math.CO

Abstract: The concept of nimbers--a.k.a. Grundy-values or nim-values--is fundamental to combinatorial game theory. Nimbers provide a complete characterization of strategic interactions among impartial games in their disjunctive sums as well as the winnability. In this paper, we initiate a study of nimber-preserving reductions among impartial games. These reductions enhance the winnability-preserving reductions in traditional computational characterizations of combinatorial games. We prove that Generalized Geography is complete for the natural class, $\cal{I}P$ , of polynomially-short impartial rulesets under nimber-preserving reductions, a property we refer to as Sprague-Grundy-complete. In contrast, we also show that not every PSPACE-complete ruleset in $\cal{I}P$ is Sprague-Grundy-complete for $\cal{I}P$. By considering every impartial game as an encoding of its nimber, our technical result establishes the following striking cryptography-inspired homomorphic theorem: Despite the PSPACE-completeness of nimber computation for $\cal{I}P$ , there exists a polynomial-time algorithm to construct, for any pair of games $G_1$, $G_2$ of $\cal{I}P$ , a prime game (i.e. a game that cannot be written as a sum) $H$ of $\cal{I}P$ , satisfying: nimber($H$) = nimber($G_1$) $\oplus$ nimber($G_2$).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.