Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MSGDD-cGAN: Multi-Scale Gradients Dual Discriminator Conditional Generative Adversarial Network (2109.05614v1)

Published 12 Sep 2021 in cs.CV and eess.IV

Abstract: Conditional Generative Adversarial Networks (cGANs) have been used in many image processing tasks. However, they still have serious problems maintaining the balance between conditioning the output on the input and creating the output with the desired distribution based on the corresponding ground truth. The traditional cGANs, similar to most conventional GANs, suffer from vanishing gradients, which backpropagate from the discriminator to the generator. Moreover, the traditional cGANs are sensitive to architectural changes due to previously mentioned gradient problems. Therefore, balancing the architecture of the cGANs is almost impossible. Recently MSG-GAN has been proposed to stabilize the performance of the GANs by applying multiple connections between the generator and discriminator. In this work, we propose a method called MSGDD-cGAN, which first stabilizes the performance of the cGANs using multi-connections gradients flow. Secondly, the proposed network architecture balances the correlation of the output to input and the fitness of the output on the target distribution. This balance is generated by using the proposed dual discrimination procedure. We tested our model by segmentation of fetal ultrasound images. Our model shows a 3.18% increase in the F1 score comparing to the pix2pix version of cGANs.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube