Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards a variational Jordan-Lee-Preskill quantum algorithm (2109.05547v4)

Published 12 Sep 2021 in quant-ph, cs.IT, cs.LG, hep-th, and math.IT

Abstract: Rapid developments of quantum information technology show promising opportunities for simulating quantum field theory in near-term quantum devices. In this work, we formulate the theory of (time-dependent) variational quantum simulation of the 1+1 dimensional $\lambda \phi4$ quantum field theory including encoding, state preparation, and time evolution, with several numerical simulation results. These algorithms could be understood as near-term variational quantum circuit (quantum neural network) analogs of the Jordan-Lee-Preskill algorithm, the basic algorithm for simulating quantum field theory using universal quantum devices. Besides, we highlight the advantages of encoding with harmonic oscillator basis based on the LSZ reduction formula and several computational efficiency such as when implementing a bosonic version of the unitary coupled cluster ansatz to prepare initial states. We also discuss how to circumvent the "spectral crowding" problem in the quantum field theory simulation and appraise our algorithm by both state and subspace fidelities.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube