Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Complex Constrained Total Variation Image Denoising Algorithm with Application to Phase Retrieval (2109.05496v1)

Published 12 Sep 2021 in eess.IV and cs.CV

Abstract: This paper considers the constrained total variation (TV) denoising problem for complex-valued images. We extend the definition of TV seminorms for real-valued images to dealing with complex-valued ones. In particular, we introduce two types of complex TV in both isotropic and anisotropic forms. To solve the constrained denoising problem, we adopt a dual approach and derive an accelerated gradient projection algorithm. We further generalize the proposed denoising algorithm as a key building block of the proximal gradient scheme to solve a vast class of complex constrained optimization problems with TV regularizers. As an example, we apply the proposed algorithmic framework to phase retrieval. We combine the complex TV regularizer with the conventional projection-based method within the constraint complex TV model. Initial results from both simulated and optical experiments demonstrate the validity of the constrained TV model in extracting sparsity priors within complex-valued images, while also utilizing physically tractable constraints that help speed up convergence.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)