Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

H2Opus: A distributed-memory multi-GPU software package for non-local operators (2109.05451v1)

Published 12 Sep 2021 in cs.DC and cs.MS

Abstract: Hierarchical $\mathcal{H}2$-matrices are asymptotically optimal representations for the discretizations of non-local operators such as those arising in integral equations or from kernel functions. Their $O(N)$ complexity in both memory and operator application makes them particularly suited for large-scale problems. As a result, there is a need for software that provides support for distributed operations on these matrices to allow large-scale problems to be represented. In this paper, we present high-performance, distributed-memory GPU-accelerated algorithms and implementations for matrix-vector multiplication and matrix recompression of hierarchical matrices in the $\mathcal{H}2$ format. The algorithms are a new module of H2Opus, a performance-oriented package that supports a broad variety of $\mathcal{H}2$-matrix operations on CPUs and GPUs. Performance in the distributed GPU setting is achieved by marshaling the tree data of the hierarchical matrix representation to allow batched kernels to be executed on the individual GPUs. MPI is used for inter-process communication. We optimize the communication data volume and hide much of the communication cost with local compute phases of the algorithms. Results show near-ideal scalability up to 1024 NVIDIA V100 GPUs on Summit, with performance exceeding 2.3 Tflop/s/GPU for the matrix-vector multiplication, and 670 Gflops/s/GPU for matrix compression, which involves batched QR and SVD operations. We illustrate the flexibility and efficiency of the library by solving a 2D variable diffusivity integral fractional diffusion problem with an algebraic multigrid-preconditioned Krylov solver and demonstrate scalability up to 16M degrees of freedom problems on 64 GPUs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.