Emergent Mind

Abstract

Despite impressive accuracy, deep neural networks are often miscalibrated and tend to overly confident predictions. Recent techniques like temperature scaling (TS) and label smoothing (LS) show effectiveness in obtaining a well-calibrated model by smoothing logits and hard labels with scalar factors, respectively. However, the use of uniform TS or LS factor may not be optimal for calibrating models trained on a long-tailed dataset where the model produces overly confident probabilities for high-frequency classes. In this study, we propose class-distribution-aware TS (CDA-TS) and LS (CDA-LS) by incorporating class frequency information in model calibration in the context of long-tailed distribution. In CDA-TS, the scalar temperature value is replaced with the CDA temperature vector encoded with class frequency to compensate for the over-confidence. Similarly, CDA-LS uses a vector smoothing factor and flattens the hard labels according to their corresponding class distribution. We also integrate CDA optimal temperature vector with distillation loss, which reduces miscalibration in self-distillation (SD). We empirically show that class-distribution-aware TS and LS can accommodate the imbalanced data distribution yielding superior performance in both calibration error and predictive accuracy. We also observe that SD with an extremely imbalanced dataset is less effective in terms of calibration performance. Code is available in https://github.com/mobarakol/Class-Distribution-Aware-TS-LS.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.