Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via GDPA Linearization (2109.04697v1)

Published 10 Sep 2021 in cs.LG

Abstract: Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer. However, unfolding a proximal splitting algorithm with a positive semi-definite (PSD) cone projection operator per iteration is expensive, due to the required full matrix eigen-decomposition. In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph classifier, where the PSD cone constraint is replaced by a set of "tightest possible" linear constraints per iteration. As a result, each iteration only requires computing a linear program (LP) and one extreme eigenvector. Inside the unrolled network, we optimize parameters via stochastic gradient descent (SGD) that determine graph edge weights in two ways: i) a metric matrix that computes feature distances, and ii) a sparse weight matrix computed via local linear embedding (LLE). Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.