Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Residual 3D Scene Flow Learning with Context-Aware Feature Extraction (2109.04685v2)

Published 10 Sep 2021 in cs.CV

Abstract: Scene flow estimation is the task to predict the point-wise or pixel-wise 3D displacement vector between two consecutive frames of point clouds or images, which has important application in fields such as service robots and autonomous driving. Although many previous works have explored greatly on scene flow estimation based on point clouds, there are two problems that have not been noticed or well solved before: 1) Points of adjacent frames in repetitive patterns may be wrongly associated due to similar spatial structure in their neighbourhoods; 2) Scene flow between adjacent frames of point clouds with long-distance movement may be inaccurately estimated. To solve the first problem, a novel context-aware set convolution layer is proposed in this paper to exploit contextual structure information of Euclidean space and learn soft aggregation weights for local point features. This design is inspired by human perception of contextual structure information during scene understanding with repetitive patterns. The context-aware set convolution layer is incorporated in a context-aware point feature pyramid module of 3D point clouds for scene flow estimation. For the second problem, an explicit residual flow learning structure is proposed in the residual flow refinement layer to cope with long-distance movement. The experiments and ablation study on FlyingThings3D and KITTI scene flow datasets demonstrate the effectiveness of each proposed component. The qualitative results show that the problems of ambiguous inter-frame association and long-distance movement estimation are well handled. Quantitative results on both FlyingThings3D and KITTI scene flow datasets show that the proposed method achieves state-of-the-art performance, surpassing all other previous works to the best of our knowledge by at least 25%.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.