Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ECQ$^{\text{x}}$: Explainability-Driven Quantization for Low-Bit and Sparse DNNs (2109.04236v2)

Published 9 Sep 2021 in cs.LG and cs.AI

Abstract: The remarkable success of deep neural networks (DNNs) in various applications is accompanied by a significant increase in network parameters and arithmetic operations. Such increases in memory and computational demands make deep learning prohibitive for resource-constrained hardware platforms such as mobile devices. Recent efforts aim to reduce these overheads, while preserving model performance as much as possible, and include parameter reduction techniques, parameter quantization, and lossless compression techniques. In this chapter, we develop and describe a novel quantization paradigm for DNNs: Our method leverages concepts of explainable AI (XAI) and concepts of information theory: Instead of assigning weight values based on their distances to the quantization clusters, the assignment function additionally considers weight relevances obtained from Layer-wise Relevance Propagation (LRP) and the information content of the clusters (entropy optimization). The ultimate goal is to preserve the most relevant weights in quantization clusters of highest information content. Experimental results show that this novel Entropy-Constrained and XAI-adjusted Quantization (ECQ${\text{x}}$) method generates ultra low-precision (2-5 bit) and simultaneously sparse neural networks while maintaining or even improving model performance. Due to reduced parameter precision and high number of zero-elements, the rendered networks are highly compressible in terms of file size, up to $103\times$ compared to the full-precision unquantized DNN model. Our approach was evaluated on different types of models and datasets (including Google Speech Commands, CIFAR-10 and Pascal VOC) and compared with previous work.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.