Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Which and Where to Focus: A Simple yet Accurate Framework for Arbitrary-Shaped Nearby Text Detection in Scene Images (2109.03451v1)

Published 8 Sep 2021 in cs.CV

Abstract: Scene text detection has drawn the close attention of researchers. Though many methods have been proposed for horizontal and oriented texts, previous methods may not perform well when dealing with arbitrary-shaped texts such as curved texts. In particular, confusion problem arises in the case of nearby text instances. In this paper, we propose a simple yet effective method for accurate arbitrary-shaped nearby scene text detection. Firstly, a One-to-Many Training Scheme (OMTS) is designed to eliminate confusion and enable the proposals to learn more appropriate groundtruths in the case of nearby text instances. Secondly, we propose a Proposal Feature Attention Module (PFAM) to exploit more effective features for each proposal, which can better adapt to arbitrary-shaped text instances. Finally, we propose a baseline that is based on Faster R-CNN and outputs the curve representation directly. Equipped with PFAM and OMTS, the detector can achieve state-of-the-art or competitive performance on several challenging benchmarks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.