Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SSEGEP: Small SEGment Emphasized Performance evaluation metric for medical image segmentation (2109.03435v1)

Published 8 Sep 2021 in eess.IV and cs.CV

Abstract: Automatic image segmentation is a critical component of medical image analysis, and hence quantifying segmentation performance is crucial. Challenges in medical image segmentation are mainly due to spatial variations of regions to be segmented and imbalance in distribution of classes. Commonly used metrics treat all detected pixels, indiscriminately. However, pixels in smaller segments must be treated differently from pixels in larger segments, as detection of smaller ones aid in early treatment of associated disease and are also easier to miss. To address this, we propose a novel evaluation metric for segmentation performance, emphasizing smaller segments, by assigning higher weightage to smaller segment pixels. Weighted false positives are also considered in deriving the new metric named, "SSEGEP"(Small SEGment Emphasized Performance evaluation metric), (range : 0(Bad) to 1(Good)). The experiments were performed on diverse anatomies(eye, liver, pancreas and breast) from publicly available datasets to show applicability of the proposed metric across different imaging techniques. Mean opinion score (MOS) and statistical significance testing is used to quantify the relevance of proposed approach. Across 33 fundus images, where the largest exudate is 1.41%, and the smallest is 0.0002% of the image, the proposed metric is 30% closer to MOS, as compared to Dice Similarity Coefficient (DSC). Statistical significance testing resulted in promising p-value of order 10{-18} with SSEGEP for hepatic tumor compared to DSC. The proposed metric is found to perform better for the images having multiple segments for a single label.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube