Papers
Topics
Authors
Recent
2000 character limit reached

Learning Fast Sample Re-weighting Without Reward Data (2109.03216v1)

Published 7 Sep 2021 in cs.LG and cs.CV

Abstract: Training sample re-weighting is an effective approach for tackling data biases such as imbalanced and corrupted labels. Recent methods develop learning-based algorithms to learn sample re-weighting strategies jointly with model training based on the frameworks of reinforcement learning and meta learning. However, depending on additional unbiased reward data is limiting their general applicability. Furthermore, existing learning-based sample re-weighting methods require nested optimizations of models and weighting parameters, which requires expensive second-order computation. This paper addresses these two problems and presents a novel learning-based fast sample re-weighting (FSR) method that does not require additional reward data. The method is based on two key ideas: learning from history to build proxy reward data and feature sharing to reduce the optimization cost. Our experiments show the proposed method achieves competitive results compared to state of the arts on label noise robustness and long-tailed recognition, and does so while achieving significantly improved training efficiency. The source code is publicly available at https://github.com/google-research/google-research/tree/master/ieg.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com