Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Recommendation Fairness: From Static to Dynamic (2109.03150v3)

Published 5 Sep 2021 in cs.IR, cs.AI, and cs.LG

Abstract: Driven by the need to capture users' evolving interests and optimize their long-term experiences, more and more recommender systems have started to model recommendation as a Markov decision process and employ reinforcement learning to address the problem. Shouldn't research on the fairness of recommender systems follow the same trend from static evaluation and one-shot intervention to dynamic monitoring and non-stop control? In this paper, we portray the recent developments in recommender systems first and then discuss how fairness could be baked into the reinforcement learning techniques for recommendation. Moreover, we argue that in order to make further progress in recommendation fairness, we may want to consider multi-agent (game-theoretic) optimization, multi-objective (Pareto) optimization, and simulation-based optimization, in the general framework of stochastic games.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)