Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Perceptual Learned Video Compression with Recurrent Conditional GAN (2109.03082v5)

Published 7 Sep 2021 in eess.IV and cs.CV

Abstract: This paper proposes a Perceptual Learned Video Compression (PLVC) approach with recurrent conditional GAN. We employ the recurrent auto-encoder-based compression network as the generator, and most importantly, we propose a recurrent conditional discriminator, which judges on raw vs. compressed video conditioned on both spatial and temporal features, including the latent representation, temporal motion and hidden states in recurrent cells. This way, the adversarial training pushes the generated video to be not only spatially photo-realistic but also temporally consistent with the groundtruth and coherent among video frames. The experimental results show that the learned PLVC model compresses video with good perceptual quality at low bit-rate, and that it outperforms the official HEVC test model (HM 16.20) and the existing learned video compression approaches for several perceptual quality metrics and user studies. The codes will be released at the project page: https://github.com/RenYang-home/PLVC.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube