Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mixed Attention Transformer for Leveraging Word-Level Knowledge to Neural Cross-Lingual Information Retrieval (2109.02789v2)

Published 7 Sep 2021 in cs.IR and cs.CL

Abstract: Pretrained contextualized representations offer great success for many downstream tasks, including document ranking. The multilingual versions of such pretrained representations provide a possibility of jointly learning many languages with the same model. Although it is expected to gain big with such joint training, in the case of cross lingual information retrieval (CLIR), the models under a multilingual setting are not achieving the same level of performance as those under a monolingual setting. We hypothesize that the performance drop is due to the translation gap between query and documents. In the monolingual retrieval task, because of the same lexical inputs, it is easier for model to identify the query terms that occurred in documents. However, in the multilingual pretrained models that the words in different languages are projected into the same hyperspace, the model tends to translate query terms into related terms, i.e., terms that appear in a similar context, in addition to or sometimes rather than synonyms in the target language. This property is creating difficulties for the model to connect terms that cooccur in both query and document. To address this issue, we propose a novel Mixed Attention Transformer (MAT) that incorporates external word level knowledge, such as a dictionary or translation table. We design a sandwich like architecture to embed MAT into the recent transformer based deep neural models. By encoding the translation knowledge into an attention matrix, the model with MAT is able to focus on the mutually translated words in the input sequence. Experimental results demonstrate the effectiveness of the external knowledge and the significant improvement of MAT embedded neural reranking model on CLIR task.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube