Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bringing a Ruler Into the Black Box: Uncovering Feature Impact from Individual Conditional Expectation Plots (2109.02724v1)

Published 6 Sep 2021 in cs.LG

Abstract: As machine learning systems become more ubiquitous, methods for understanding and interpreting these models become increasingly important. In particular, practitioners are often interested both in what features the model relies on and how the model relies on them--the feature's impact on model predictions. Prior work on feature impact including partial dependence plots (PDPs) and Individual Conditional Expectation (ICE) plots has focused on a visual interpretation of feature impact. We propose a natural extension to ICE plots with ICE feature impact, a model-agnostic, performance-agnostic feature impact metric drawn out from ICE plots that can be interpreted as a close analogy to linear regression coefficients. Additionally, we introduce an in-distribution variant of ICE feature impact to vary the influence of out-of-distribution points as well as heterogeneity and non-linearity measures to characterize feature impact. Lastly, we demonstrate ICE feature impact's utility in several tasks using real-world data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube