Papers
Topics
Authors
Recent
2000 character limit reached

Counterfactual Evaluation for Explainable AI (2109.01962v1)

Published 5 Sep 2021 in cs.CL

Abstract: While recent years have witnessed the emergence of various explainable methods in machine learning, to what degree the explanations really represent the reasoning process behind the model prediction -- namely, the faithfulness of explanation -- is still an open problem. One commonly used way to measure faithfulness is \textit{erasure-based} criteria. Though conceptually simple, erasure-based criterion could inevitably introduce biases and artifacts. We propose a new methodology to evaluate the faithfulness of explanations from the \textit{counterfactual reasoning} perspective: the model should produce substantially different outputs for the original input and its corresponding counterfactual edited on a faithful feature. Specially, we introduce two algorithms to find the proper counterfactuals in both discrete and continuous scenarios and then use the acquired counterfactuals to measure faithfulness. Empirical results on several datasets show that compared with existing metrics, our proposed counterfactual evaluation method can achieve top correlation with the ground truth under diffe

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.