Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comprehensive Approach for UAV Small Object Detection with Simulation-based Transfer Learning and Adaptive Fusion (2109.01800v1)

Published 4 Sep 2021 in cs.CV

Abstract: Precisely detection of Unmanned Aerial Vehicles(UAVs) plays a critical role in UAV defense systems. Deep learning is widely adopted for UAV object detection whereas researches on this topic are limited by the amount of dataset and small scale of UAV. To tackle these problems, a novel comprehensive approach that combines transfer learning based on simulation data and adaptive fusion is proposed. Firstly, the open-source plugin AirSim proposed by Microsoft is used to generate mass realistic simulation data. Secondly, transfer learning is applied to obtain a pre-trained YOLOv5 model on the simulated dataset and fine-tuned model on the real-world dataset. Finally, an adaptive fusion mechanism is proposed to further improve small object detection performance. Experiment results demonstrate the effectiveness of simulation-based transfer learning which leads to a 2.7% performance increase on UAV object detection. Furthermore, with transfer learning and adaptive fusion mechanism, 7.1% improvement is achieved compared to the original YOLO v5 model.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.