Papers
Topics
Authors
Recent
2000 character limit reached

High-quality Thermal Gibbs Sampling with Quantum Annealing Hardware (2109.01690v2)

Published 3 Sep 2021 in quant-ph and cs.LG

Abstract: Quantum Annealing (QA) was originally intended for accelerating the solution of combinatorial optimization tasks that have natural encodings as Ising models. However, recent experiments on QA hardware platforms have demonstrated that, in the operating regime corresponding to weak interactions, the QA hardware behaves like a noisy Gibbs sampler at a hardware-specific effective temperature. This work builds on those insights and identifies a class of small hardware-native Ising models that are robust to noise effects and proposes a procedure for executing these models on QA hardware to maximize Gibbs sampling performance. Experimental results indicate that the proposed protocol results in high-quality Gibbs samples from a hardware-specific effective temperature. Furthermore, we show that this effective temperature can be adjusted by modulating the annealing time and energy scale. The procedure proposed in this work provides an approach to using QA hardware for Ising model sampling presenting potential new opportunities for applications in machine learning and physics simulation.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.