Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

End-to-end 100-TOPS/W Inference With Analog In-Memory Computing: Are We There Yet? (2109.01404v1)

Published 3 Sep 2021 in cs.AR

Abstract: In-Memory Acceleration (IMA) promises major efficiency improvements in deep neural network (DNN) inference, but challenges remain in the integration of IMA within a digital system. We propose a heterogeneous architecture coupling 8 RISC-V cores with an IMA in a shared-memory cluster, analyzing the benefits and trade-offs of in-memory computing on the realistic use case of a MobileNetV2 bottleneck layer. We explore several IMA integration strategies, analyzing performance, area, and energy efficiency. We show that while pointwise layers achieve significant speed-ups over software implementation, on depthwise layer the inability to efficiently map parameters on the accelerator leads to a significant trade-off between throughput and area. We propose a hybrid solution where pointwise convolutions are executed on IMA while depthwise on the cluster cores, achieving a speed-up of 3x over SW execution while saving 50% of area when compared to an all-in IMA solution with similar performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.