Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog Act Detection (2109.01267v1)

Published 3 Sep 2021 in cs.CL

Abstract: The success of interactive dialog systems is usually associated with the quality of the spoken language understanding (SLU) task, which mainly identifies the corresponding dialog acts and slot values in each turn. By treating utterances in isolation, most SLU systems often overlook the semantic context in which a dialog act is expected. The act dependency between turns is non-trivial and yet critical to the identification of the correct semantic representations. Previous works with limited context awareness have exposed the inadequacy of dealing with complexity in multiproned user intents, which are subject to spontaneous change during turn transitions. In this work, we propose to enhance SLU in multi-turn dialogs, employing a context-aware hierarchical BERT fusion Network (CaBERT-SLU) to not only discern context information within a dialog but also jointly identify multiple dialog acts and slots in each utterance. Experimental results show that our approach reaches new state-of-the-art (SOTA) performances in two complicated multi-turn dialogue datasets with considerable improvements compared with previous methods, which only consider single utterances for multiple intents and slot filling.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.