Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Robustness for Unsupervised Domain Adaptation (2109.00946v1)

Published 2 Sep 2021 in cs.LG and cs.CV

Abstract: Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on improving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.