Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FA-GAN: Feature-Aware GAN for Text to Image Synthesis (2109.00907v1)

Published 2 Sep 2021 in cs.CV

Abstract: Text-to-image synthesis aims to generate a photo-realistic image from a given natural language description. Previous works have made significant progress with Generative Adversarial Networks (GANs). Nonetheless, it is still hard to generate intact objects or clear textures (Fig 1). To address this issue, we propose Feature-Aware Generative Adversarial Network (FA-GAN) to synthesize a high-quality image by integrating two techniques: a self-supervised discriminator and a feature-aware loss. First, we design a self-supervised discriminator with an auxiliary decoder so that the discriminator can extract better representation. Secondly, we introduce a feature-aware loss to provide the generator more direct supervision by employing the feature representation from the self-supervised discriminator. Experiments on the MS-COCO dataset show that our proposed method significantly advances the state-of-the-art FID score from 28.92 to 24.58.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.