Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-agent Bayesian Learning with Best Response Dynamics: Convergence and Stability (2109.00719v1)

Published 2 Sep 2021 in cs.GT and econ.TH

Abstract: We study learning dynamics induced by strategic agents who repeatedly play a game with an unknown payoff-relevant parameter. In this dynamics, a belief estimate of the parameter is repeatedly updated given players' strategies and realized payoffs using Bayes's rule. Players adjust their strategies by accounting for best response strategies given the belief. We show that, with probability 1, beliefs and strategies converge to a fixed point, where the belief consistently estimates the payoff distribution for the strategy, and the strategy is an equilibrium corresponding to the belief. However, learning may not always identify the unknown parameter because the belief estimate relies on the game outcomes that are endogenously generated by players' strategies. We obtain sufficient and necessary conditions, under which learning leads to a globally stable fixed point that is a complete information Nash equilibrium. We also provide sufficient conditions that guarantee local stability of fixed point beliefs and strategies.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.