Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A survey on IQA (2109.00347v2)

Published 29 Aug 2021 in eess.IV and cs.CV

Abstract: Image quality assessment(IQA) is of increasing importance for image-based applications. Its purpose is to establish a model that can replace humans for accurately evaluating image quality. According to whether the reference image is complete and available, image quality evaluation can be divided into three categories: full-reference(FR), reduced-reference(RR), and non-reference(NR) image quality assessment. Due to the vigorous development of deep learning and the widespread attention of researchers, several non-reference image quality assessment methods based on deep learning have been proposed in recent years, and some have exceeded the performance of reduced -reference or even full-reference image quality assessment models. This article will review the concepts and metrics of image quality assessment and also video quality assessment, briefly introduce some methods of full-reference and semi-reference image quality assessment, and focus on the non-reference image quality assessment methods based on deep learning. Then introduce the commonly used synthetic database and real-world database. Finally, summarize and present challenges.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)