Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning (2108.13888v1)
Abstract: \textbf{P}re-\textbf{T}rained \textbf{M}odel\textbf{s} have been widely applied and recently proved vulnerable under backdoor attacks: the released pre-trained weights can be maliciously poisoned with certain triggers. When the triggers are activated, even the fine-tuned model will predict pre-defined labels, causing a security threat. These backdoors generated by the poisoning methods can be erased by changing hyper-parameters during fine-tuning or detected by finding the triggers. In this paper, we propose a stronger weight-poisoning attack method that introduces a layerwise weight poisoning strategy to plant deeper backdoors; we also introduce a combinatorial trigger that cannot be easily detected. The experiments on text classification tasks show that previous defense methods cannot resist our weight-poisoning method, which indicates that our method can be widely applied and may provide hints for future model robustness studies.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.