Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Successful Recovery Performance Guarantees of SOMP Under the L2-norm of Noise (2108.13855v3)

Published 31 Aug 2021 in cs.IT, eess.SP, and math.IT

Abstract: The simultaneous orthogonal matching pursuit (SOMP) is a popular, greedy approach for common support recovery of a row-sparse matrix. However, compared to the noiseless scenario, the performance analysis of noisy SOMP is still nascent, especially in the scenario of unbounded noise. In this paper, we present a new study based on the mutual incoherence property (MIP) for performance analysis of noisy SOMP. Specifically, when noise is bounded, we provide the condition on which the exact support recovery is guaranteed in terms of the MIP. When noise is unbounded, we instead derive a bound on the successful recovery probability (SRP) that depends on the specific distribution of the $\ell_2$-norm of the noise matrix. Then we focus on the common case when noise is random Gaussian and show that the lower bound of SRP follows Tracy-Widom law distribution. The analysis reveals the number of measurements, noise level, the number of sparse vectors, and the value of mutual coherence that are required to guarantee a predefined recovery performance. Theoretically, we show that the mutual coherence of the measurement matrix must decrease proportionally to the noise standard deviation, and the number of sparse vectors needs to grow proportionally to the noise variance. Finally, we extensively validate the derived analysis through numerical simulations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)