Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Suboptimal nonlinear moving horizon estimation (2108.13750v3)

Published 31 Aug 2021 in eess.SY and cs.SY

Abstract: In this paper, we propose a suboptimal moving horizon estimator for a general class of nonlinear systems. For the stability analysis, we transfer the "feasibility-implies-stability/robustness" paradigm from model predictive control to the context of moving horizon estimation in the following sense: Using a suitably defined, feasible candidate solution based on an auxiliary observer, robust stability of the proposed suboptimal estimator is inherited independently of the horizon length and even if no optimization is performed. Moreover, the proposed design allows for the choice between two cost functions different in structure: the former in the manner of a standard least squares approach, which is typically used in practice, and the latter following a time-discounted modification, resulting in better theoretical guarantees. We apply the proposed suboptimal estimator to a nonlinear chemical reactor process, verify the theoretical assumptions, and show that even a few iterations of the optimizer are sufficient to significantly improve the estimation results of the auxiliary observer. Furthermore, we illustrate the flexibility of the proposed design by employing different solvers and compare the performance with two state-of-the-art fast MHE schemes from the literature.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.