Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Suboptimal nonlinear moving horizon estimation (2108.13750v3)

Published 31 Aug 2021 in eess.SY and cs.SY

Abstract: In this paper, we propose a suboptimal moving horizon estimator for a general class of nonlinear systems. For the stability analysis, we transfer the "feasibility-implies-stability/robustness" paradigm from model predictive control to the context of moving horizon estimation in the following sense: Using a suitably defined, feasible candidate solution based on an auxiliary observer, robust stability of the proposed suboptimal estimator is inherited independently of the horizon length and even if no optimization is performed. Moreover, the proposed design allows for the choice between two cost functions different in structure: the former in the manner of a standard least squares approach, which is typically used in practice, and the latter following a time-discounted modification, resulting in better theoretical guarantees. We apply the proposed suboptimal estimator to a nonlinear chemical reactor process, verify the theoretical assumptions, and show that even a few iterations of the optimizer are sufficient to significantly improve the estimation results of the auxiliary observer. Furthermore, we illustrate the flexibility of the proposed design by employing different solvers and compare the performance with two state-of-the-art fast MHE schemes from the literature.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube