Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning on Edge TPUs (2108.13732v2)

Published 31 Aug 2021 in cs.CV and cs.LG

Abstract: Computing at the edge is important in remote settings, however, conventional hardware is not optimized for utilizing deep neural networks. The Google Edge TPU is an emerging hardware accelerator that is cost, power and speed efficient, and is available for prototyping and production purposes. Here, I review the Edge TPU platform, the tasks that have been accomplished using the Edge TPU, and which steps are necessary to deploy a model to the Edge TPU hardware. The Edge TPU is not only capable of tackling common computer vision tasks, but also surpasses other hardware accelerators, especially when the entire model can be deployed to the Edge TPU. Co-embedding the Edge TPU in cameras allows a seamless analysis of primary data. In summary, the Edge TPU is a maturing system that has proven its usability across multiple tasks.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.