Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MELM: Data Augmentation with Masked Entity Language Modeling for Low-Resource NER (2108.13655v2)

Published 31 Aug 2021 in cs.CL

Abstract: Data augmentation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as NER, data augmentation methods often suffer from token-label misalignment, which leads to unsatsifactory performance. In this work, we propose Masked Entity LLMing (MELM) as a novel data augmentation framework for low-resource NER. To alleviate the token-label misalignment issue, we explicitly inject NER labels into sentence context, and thus the fine-tuned MELM is able to predict masked entity tokens by explicitly conditioning on their labels. Thereby, MELM generates high-quality augmented data with novel entities, which provides rich entity regularity knowledge and boosts NER performance. When training data from multiple languages are available, we also integrate MELM with code-mixing for further improvement. We demonstrate the effectiveness of MELM on monolingual, cross-lingual and multilingual NER across various low-resource levels. Experimental results show that our MELM presents substantial improvement over the baseline methods.

Citations (78)

Summary

We haven't generated a summary for this paper yet.