Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures (2108.13619v4)

Published 31 Aug 2021 in cs.RO

Abstract: Motion planning is critical to realize the autonomous operation of mobile robots. As the complexity and randomness of robot application scenarios increase, the planning capability of the classical hierarchical motion planners is challenged. With the development of machine learning, deep reinforcement learning (DRL)-based motion planner has gradually become a research hotspot due to its several advantageous features. DRL-based motion planner is model-free and does not rely on the prior structured map. Most importantly, DRL-based motion planner achieves the unification of the global planner and the local planner. In this paper, we provide a systematic review of various motion planning methods. First, we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features. Subsequently, we concentrate on summarizing RL-based motion planning approaches, including motion planners combined with RL improvements, map-free RL-based motion planners, and multi-robot cooperative planning methods. Last but not least, we analyze the urgent challenges faced by these mainstream RL-based motion planners in detail, review some state-of-the-art works for these issues, and propose suggestions for future research.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.