Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures (2108.13619v4)

Published 31 Aug 2021 in cs.RO

Abstract: Motion planning is critical to realize the autonomous operation of mobile robots. As the complexity and randomness of robot application scenarios increase, the planning capability of the classical hierarchical motion planners is challenged. With the development of machine learning, deep reinforcement learning (DRL)-based motion planner has gradually become a research hotspot due to its several advantageous features. DRL-based motion planner is model-free and does not rely on the prior structured map. Most importantly, DRL-based motion planner achieves the unification of the global planner and the local planner. In this paper, we provide a systematic review of various motion planning methods. First, we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features. Subsequently, we concentrate on summarizing RL-based motion planning approaches, including motion planners combined with RL improvements, map-free RL-based motion planners, and multi-robot cooperative planning methods. Last but not least, we analyze the urgent challenges faced by these mainstream RL-based motion planners in detail, review some state-of-the-art works for these issues, and propose suggestions for future research.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.