Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multiscale modeling of inelastic materials with Thermodynamics-based Artificial Neural Networks (TANN) (2108.13137v3)

Published 30 Aug 2021 in cond-mat.mtrl-sci, cs.CE, cs.LG, and physics.comp-ph

Abstract: The mechanical behavior of inelastic materials with microstructure is very complex and hard to grasp with heuristic, empirical constitutive models. For this purpose, multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of solids and structures. Nevertheless, the calculation cost of such approaches is extremely high and prohibitive for real-scale applications involving inelastic materials. Here, we propose the so-called Thermodynamics-based Artificial Neural Networks (TANN) for the constitutive modeling of materials with inelastic and complex microstructure. Our approach integrates thermodynamics-aware dimensionality reduction techniques and thermodynamics-based deep neural networks to identify, in an autonomous way, the constitutive laws and discover the internal state variables of complex inelastic materials. The efficiency and accuracy of TANN in predicting the average and local stress-strain response, the free-energy and the dissipation rate is demonstrated for both regular and perturbed two- and three-dimensional lattice microstructures in inelasticity. TANN manage to identify the internal state variables that characterize the inelastic deformation of the complex microstructural fields. These internal state variables are then used to reconstruct the microdeformation fields of the microstructure at a given state. Finally, a double-scale homogenization scheme (FEMxTANN) is used to solve a large scale boundary value problem. The high performance of the homogenized model using TANN is illustrated through detailed comparisons with microstructural calculations at large scale. An excellent agreement is shown for a variety of monotonous and cyclic stress-strain paths.

Citations (78)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.