Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Coinductive Version of Milner's Proof System for Regular Expressions Modulo Bisimilarity (2108.13104v3)

Published 30 Aug 2021 in cs.LO and cs.FL

Abstract: By adapting Salomaa's complete proof system for equality of regular expressions under the language semantics, Milner (1984) formulated a sound proof system for bisimilarity of regular expressions under the process interpretation he introduced. He asked whether this system is complete. Proof-theoretic arguments attempting to show completeness of this equational system are complicated by the presence of a non-algebraic rule for solving fixed-point equations by using star iteration. We characterize the derivational power that the fixed-point rule adds to the purely equational part $\text{Mil${\boldsymbol{-}}$}$ of Milner's system $\text{$\text{Mil}$}$: it corresponds to the power of coinductive proofs over $\text{Mil${\boldsymbol{-}}$}$ that have the form of finite process graphs with the loop existence and elimination property $\text{LEE}$. We define a variant system $\text{cMil}$ by replacing the fixed-point rule in $\text{Mil}$ with a rule that permits $\text{LEE}$-shaped circular derivations in $\text{Mil${\boldsymbol{-}}$}$ from previously derived equations as a premise. With this rule alone we also define the variant system $\text{CLC}$ for merely combining $\text{LEE}$-shaped coinductive proofs over $\text{Mil${\boldsymbol{-}}$}$. We show that both $\text{cMil}$ and $\text{CLC}$ have proof interpretations in $\text{Mil}$, and vice versa. As this correspondence links, in both directions, derivability in $\text{Mil}$ with derivation trees of process graphs, it widens the space for graph-based approaches to finding a completeness proof of Milner's system. This report is the extended version of a paper with the same title presented at CALCO 2021.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)