Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Rethinking Deep Image Prior for Denoising (2108.12841v1)

Published 29 Aug 2021 in eess.IV and cs.CV

Abstract: Deep image prior (DIP) serves as a good inductive bias for diverse inverse problems. Among them, denoising is known to be particularly challenging for the DIP due to noise fitting with the requirement of an early stopping. To address the issue, we first analyze the DIP by the notion of effective degrees of freedom (DF) to monitor the optimization progress and propose a principled stopping criterion before fitting to noise without access of a paired ground truth image for Gaussian noise. We also propose the `stochastic temporal ensemble (STE)' method for incorporating techniques to further improve DIP's performance for denoising. We additionally extend our method to Poisson noise. Our empirical validations show that given a single noisy image, our method denoises the image while preserving rich textual details. Further, our approach outperforms prior arts in LPIPS by large margins with comparable PSNR and SSIM on seven different datasets.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.