Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Uncertainty-Aware Model Adaptation for Unsupervised Cross-Domain Object Detection (2108.12612v1)

Published 28 Aug 2021 in cs.CV

Abstract: This work tackles the unsupervised cross-domain object detection problem which aims to generalize a pre-trained object detector to a new target domain without labels. We propose an uncertainty-aware model adaptation method, which is based on two motivations: 1) the estimation and exploitation of model uncertainty in a new domain is critical for reliable domain adaptation; and 2) the joint alignment of distributions for inputs (feature alignment) and outputs (self-training) is needed. To this end, we compose a Bayesian CNN-based framework for uncertainty estimation in object detection, and propose an algorithm for generation of uncertainty-aware pseudo-labels. We also devise a scheme for joint feature alignment and self-training of the object detection model with uncertainty-aware pseudo-labels. Experiments on multiple cross-domain object detection benchmarks show that our proposed method achieves state-of-the-art performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.