Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A new rotating machinery fault diagnosis method based on the Time Series Transformer (2108.12562v1)

Published 28 Aug 2021 in cs.CE

Abstract: Fault diagnosis of rotating machinery is an important engineering problem. In recent years, fault diagnosis methods based on the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) have been mature, but Transformer has not been widely used in the field of fault diagnosis. To address these deficiencies, a new method based on the Time Series Transformer (TST) is proposed to recognize the fault mode of bearings. In this paper, our contributions include: Firstly, we designed a tokens sequences generation method which can handle data in 1D format, namely time series tokenizer. Then, the TST combining time series tokenizer and Transformer was introduced. Furthermore, the test results on the given dataset show that the proposed method has better fault identification capability than the traditional CNN and RNN models. Secondly, through the experiments, the effect of structural hyperparameters such as subsequence length and embedding dimension on fault diagnosis performance, computational complexity and parameters number of the TST is analyzed in detail. The influence laws of some hyperparameters are obtained. Finally, via t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction method, the feature vectors in the embedding space are visualized. On this basis, the working pattern of TST has been explained to a certain extent. Moreover, by analyzing the distribution form of the feature vectors, we find that compared with the traditional CNN and RNN models, the feature vectors extracted by the method in this paper show the best intra-class compactness and inter-class separability. These results further demonstrate the effectiveness of the proposed method.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.