Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing (2108.12510v1)

Published 27 Aug 2021 in cs.LG

Abstract: Machine learning models achieve state-of-the-art performance on many supervised learning tasks. However, prior evidence suggests that these models may learn to rely on shortcut biases or spurious correlations (intuitively, correlations that do not hold in the test as they hold in train) for good predictive performance. Such models cannot be trusted in deployment environments to provide accurate predictions. While viewing the problem from a causal lens is known to be useful, the seamless integration of causation techniques into machine learning pipelines remains cumbersome and expensive. In this work, we study and extend a causal pre-training debiasing technique called causal bootstrapping (CB) under five practical confounded-data generation-acquisition scenarios (with known and unknown confounding). Under these settings, we systematically investigate the effect of confounding bias on deep learning model performance, demonstrating their propensity to rely on shortcut biases when these biases are not properly accounted for. We demonstrate that such a causal pre-training technique can significantly outperform existing base practices to mitigate confounding bias on real-world domain generalization benchmarking tasks. This systematic investigation underlines the importance of accounting for the underlying data-generating mechanisms and fortifying data-preprocessing pipelines with a causal framework to develop methods robust to confounding biases.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.