Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the impact of using X-ray energy response imagery for object detection via Convolutional Neural Networks (2108.12505v1)

Published 27 Aug 2021 in cs.CV and cs.LG

Abstract: Automatic detection of prohibited items within complex and cluttered X-ray security imagery is essential to maintaining transport security, where prior work on automatic prohibited item detection focus primarily on pseudo-colour (rgb}) X-ray imagery. In this work we study the impact of variant X-ray imagery, i.e., X-ray energy response (high, low}) and effective-z compared to rgb, via the use of deep Convolutional Neural Networks (CNN) for the joint object detection and segmentation task posed within X-ray baggage security screening. We evaluate state-of-the-art CNN architectures (Mask R-CNN, YOLACT, CARAFE and Cascade Mask R-CNN) to explore the transferability of models trained with such 'raw' variant imagery between the varying X-ray security scanners that exhibits differing imaging geometries, image resolutions and material colour profiles. Overall, we observe maximal detection performance using CARAFE, attributable to training using combination of rgb, high, low, and effective-z X-ray imagery, obtaining 0.7 mean Average Precision (mAP) for a six class object detection problem. Our results also exhibit a remarkable degree of generalisation capability in terms of cross-scanner transferability (AP: 0.835/0.611) for a one class object detection problem by combining rgb, high, low, and effective-z imagery.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.