Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CAPE: Context-Aware Private Embeddings for Private Language Learning (2108.12318v1)

Published 27 Aug 2021 in cs.CL and cs.LG

Abstract: Deep learning-based LLMs have achieved state-of-the-art results in a number of applications including sentiment analysis, topic labelling, intent classification and others. Obtaining text representations or embeddings using these models presents the possibility of encoding personally identifiable information learned from language and context cues that may present a risk to reputation or privacy. To ameliorate these issues, we propose Context-Aware Private Embeddings (CAPE), a novel approach which preserves privacy during training of embeddings. To maintain the privacy of text representations, CAPE applies calibrated noise through differential privacy, preserving the encoded semantic links while obscuring sensitive information. In addition, CAPE employs an adversarial training regime that obscures identified private variables. Experimental results demonstrate that the proposed approach reduces private information leakage better than either single intervention.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.