Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Propaganda on the Sentence Level during the COVID-19 Pandemic (2108.12269v1)

Published 31 Jul 2021 in cs.CY, cs.CL, and cs.LG

Abstract: The spread of misinformation, conspiracy, and questionable content and information manipulation by foreign adversaries on social media has surged along with the COVID-19 pandemic. Such malicious cyber-enabled actions may cause increasing social polarization, health crises, and property loss. In this paper, using fine-tuned contextualized embedding trained on Reddit, we tackle the detection of the propaganda of such user accounts and their targeted issues on Twitter during March 2020 when the COVID-19 epidemic became recognized as a pandemic. Our result shows that the pro-China group appeared to be tweeting 35 to 115 times more than the neutral group. At the same time, neutral groups were tweeting more positive-attitude content and voicing alarm for the COVID-19 situation. The pro-China group was also using more call-for-action words on political issues not necessarily China-related.

Citations (1)

Summary

We haven't generated a summary for this paper yet.