Papers
Topics
Authors
Recent
2000 character limit reached

A convergent finite volume scheme for the stochastic barotropic compressible Euler equations (2108.12201v1)

Published 27 Aug 2021 in math.AP, cs.NA, math.NA, and math.PR

Abstract: In this paper, we analyze a semi-discrete finite volume scheme for the three-dimensional barotropic compressible Euler equations driven by a multiplicative Brownian noise. We derive necessary a priori estimates for numerical approximations, and show that the Young measure generated by the numerical approximations converge to a dissipative measure--valued martingale solution to the stochastic compressible Euler system. These solutions are probabilistically weak in the sense that the driving noise and associated filtration are integral part of the solution. Moreover, we demonstrate strong convergence of numerical solutions to the regular solution of the limit systems at least on the lifespan of the latter, thanks to the weak (measure-valued)--strong uniqueness principle for the underlying system. To the best of our knowledge, this is the first attempt to prove the convergence of numerical approximations for the underlying system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.