Translation Error Detection as Rationale Extraction (2108.12197v1)
Abstract: Recent Quality Estimation (QE) models based on multilingual pre-trained representations have achieved very competitive results when predicting the overall quality of translated sentences. Predicting translation errors, i.e. detecting specifically which words are incorrect, is a more challenging task, especially with limited amounts of training data. We hypothesize that, not unlike humans, successful QE models rely on translation errors to predict overall sentence quality. By exploring a set of feature attribution methods that assign relevance scores to the inputs to explain model predictions, we study the behaviour of state-of-the-art sentence-level QE models and show that explanations (i.e. rationales) extracted from these models can indeed be used to detect translation errors. We therefore (i) introduce a novel semi-supervised method for word-level QE and (ii) propose to use the QE task as a new benchmark for evaluating the plausibility of feature attribution, i.e. how interpretable model explanations are to humans.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.